0+x^2=51

Simple and best practice solution for 0+x^2=51 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0+x^2=51 equation:



0+x^2=51
We move all terms to the left:
0+x^2-(51)=0
We add all the numbers together, and all the variables
x^2-51=0
a = 1; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·1·(-51)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*1}=\frac{0-2\sqrt{51}}{2} =-\frac{2\sqrt{51}}{2} =-\sqrt{51} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*1}=\frac{0+2\sqrt{51}}{2} =\frac{2\sqrt{51}}{2} =\sqrt{51} $

See similar equations:

| 1x+6x-22=15 | | (1/2)=(1/p)+(1/6) | | 5x-3(20-x)=52 | | 4*3*y=360 | | (4z+3z2–2z3)+(2z–z2+8)= | | 8x=(5x+0.6)+0.6 | | X²+20x-4800=0 | | 42+x=7x | | x2-14x+44=0 | | 3.0625+x=12.25 | | 12x2-29x+15=0 | | 49+x=196 | | 7z^2−24z+9=0 | | 3x+4=×+10 | | x2+11x=-24 | | 3x-10/6x+11=8/3 | | 2l^2-4l-111=0 | | 5x+10x=1750 | | Q=3q/2-4 | | 2+a6=5 | | j+9=16 | | v+8=22 | | 5x-3(x-4)=-5+4x+9 | | 200x=66 | | 4z–6=6(z+2)+8 | | 2x-5(x-2)=-9+4x-2 | | -2x-13.8x=8x-(6x+1) | | 25=-0.4x^2+x | | r+48/r;r=8 | | Xx5=25 | | 10^x2-8=100x | | 3^10x^+4=81 |

Equations solver categories